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Abstract. We discuss the relationship between the analysis of completely integrable systems
using bi-differential calculi which was introduced by Dimakis and Müller-Hoissen (2000 Bi-
differential calculi and integrable models J. Phys. A: Math. Gen. 33 957–74), and the bi-Hamiltonian
formalism, in the finite-dimensional case.

In a recent paper in this journal [1] Dimakis and Müller-Hoissen have shown how to generate
conservation laws in completely integrable systems by using a bi-differential calculus. In
the concluding section of their paper they ask how their approach ‘is related to various
other characterizations of completely integrable systems’, and mention the bi-Hamiltonian
formalism as one of these other approaches. We will briefly discuss aspects of the relationship
between their work and the bi-Hamiltonian formalism in the finite-dimensional case.

We will be concerned with bi-differential calculi over the exterior algebra �(A) = ∧
(M)

on a manifold M , where A = C∞(M) is the algebra of real-valued C∞ functions on M , and
where one of the derivations is the exterior derivative d. (Actually, Dimakis and Müller-
Hoissen denote the derivation which plays the role of the exterior derivative here by δ; we
have thought it better to stick to the standard notation of differential geometry.) The second
derivation δ, which creates the bi-differential calculus, is required to be, like d, a derivation of
degree 1 of the exterior algebra and to satisfy

δ2 = 0 dδ + δd = 0.

Our first observation is that, according to Frölicher–Nijenhuis theory, a derivation of degree 1
which (anti-)commutes with d (that is, a derivation of type d∗ in the terminology of Frölicher
and Nijenhuis) must be of the form δ = dR for some type (1, 1) tensor field R on M , and that
the necessary and sufficient condition for dR to satisfy dR

2 = 0 is that the torsion, or Nijenhuis
tensor, of R must be zero. Thus in this particular case, bi-differential calculi are in one-to-one
correspondence with type (1, 1) tensor fields with vanishing torsion.

In what follows we will be concerned mainly with the action of dR on C∞(M), for which
we have the formula dRf = R∗(df ), where we think of the tensor R as a homomorphism of
the module of vector fields on M , and R∗ as its adjoint acting on 1-forms. In fact a derivation
δ of type d∗ is determined by its action on functions—the condition dδ + δd = 0 defines its
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action on s-forms for s � 1—and it is easy to see that if δ is of degree 1 its action on functions
must be given by δf = R∗(df ) for some R.

The basic step in the construction of Dimakis and Müller-Hoissen is to define inductively
a sequence of (s − 1)-forms χ(m), m = 0, 1, 2, . . . , where s is an integer for which closed
s-forms are exact, by the rule

dχ(m+1) = dRχ(m).

That this is possible follows from the commutation relation ddR + dRd = 0: we have, for
m � 1,

ddRχ(m) = −dRdχ(m) = −dR
2χ(m−1) = 0

so the scheme is consistent provided that ddRχ(0) = −dRdχ(0) = 0.
To make the correspondence with bi-Hamiltonian systems we suppose that M is a Poisson

manifold, whose Poisson structure comes from a symplectic form ω0; that R and ω0 are such
that for every pair of vector fields X and Y on M ,

ω0(R(X), Y ) = ω0(X, R(Y ))

so that ω1, defined by ω1(X, Y ) = ω0(R(X), Y ), is a 2-form; and that dω1 = 0. Then if we
set, for f, g ∈ C∞(M),

{f, g}1 = ω1(Xf , Xg)

where Xf is the Hamiltonian vector field corresponding to f with respect to ω0, then {·, ·}1 is
bilinear over R, skew-symmetric, and satisfies the derivation property

{f, gh}1 = g{f, h}1 + {f, g}1h.

Furthermore, it follows from the vanishing of the torsion of R, together with the closure of
ω1, that the Jacobi identity holds, so that {·, ·}1 is a second Poisson bracket on M , which is
moreover compatible with {·, ·}0, the Poisson bracket coming from ω0. Thus in such a case a
bi-differential calculus endows M with a Poisson–Nijenhuis structure, that is, with a second
Poisson bracket compatible with the first; R is the recursion tensor of the structure.

The construction of the χ(m), in the case s = 1, translates into the terminology of Poisson
brackets as follows. We assume that M is such that closed 1-forms are exact. From the
definition

{f, g}1 = ω1(Xf , Xg) = ω0(Xf , R(Xg)) = −R(Xg)f = −dRf (Xg)

the inductive definition of the functions χ(m) can be expressed as follows:

{χ(m+1), ·}0 = {χ(m), ·}1.

It is easy to show that functions χ(m) so defined are in involution with respect to both Poisson
brackets—we shall outline the proof of a more general result below.

Dimakis and Müller-Hoissen usually impose the initial condition thatdχ(0) = 0. However,
the scheme will also work with the less restrictive initial condition that ddRχ(0) = −dRdχ(0) =
0, as they remark and as we remarked above. We will show that, under sufficiently generic
conditions, the sum of the eigenfunctions of R satisfies this condition.

Note first that if X is an eigenvectorfield of R with eigenfunction λ, and if X′ is an
eigenvectorfield of R with eigenfunction λ′, then from the symmetry condition on R

(λ − λ′)ω0(X, X′) = 0.

It follows that R can have at most n functionally independent eigenfunctions, where dim M =
2n. We consider the case in which R has n functionally independent eigenfunctions, the
maximum number, such that where the eigenvalues are distinct each is doubly degenerate. It
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follows from the vanishing of the torsion of R that if the eigenfunctions are λa , a = 1, 2, . . . , n,
and Xa is any eigenvector-field corresponding to λa , then

Xa(λb) = 0 b 
= a.

It is clear from dimensional considerations that the two-dimensional eigendistribution
corresponding to λa must contain a one-dimensional subspace 〈Ya〉 such that Ya(λa) = 0;
and we may therefore choose a (local) basis of vector fields {Ya, Za|a = 1, 2, . . . , n} such that
for each a, 〈Ya, Za〉 is the eigendistribution corresponding to λa , Ya(λa) = 0, and Za(λa) = 1.
Now set

χ(0) =
n∑

a=1

λa.

Then for any eigenvectorfield Xa ,

dRχ(0)(Xa) =
n∑

b=1

dλb(R(Xa)) = λaXa(λa) =
{

0 if Xa = Ya

λa if Xa = Za .

It follows that

dRχ(0) =
n∑

a=1

λadλa = 1
2d

( n∑
a=1

λa
2

)
.

The sequence of functions generated in this case can, without essential loss of generality, be
taken to be the sums of the powers of the eigenfunctions of R, or equivalently the traces of the
powers of R. We therefore recover the result that the traces of the powers of the recursion tensor
of a Poisson–Nijenhuis structure are in involution with respect to both Poisson brackets. (The
sequence of functions generated by the scheme of Dimakis and Müller-Hoissen is in principle
infinite, but of course only the first n elements of the sequence are functionally independent.)

We can also give a simple example of what Dimakis and Müller-Hoissen call a gauged
bi-differential calculus. In a gauged bi-differential calculus the derivations d and δ are replaced
by operators

Dd = d + A Dδ = δ + B

where in general A and B are square matrices of 1-forms and the operators act on square
matrices of forms. The operators have to satisfy the conditions

Dd
2 = Dδ

2 = 0 DdDδ + DδDd = 0.

In our example the operators act on functions and Dd = d; however,

Dδ = dR + df

where dR is the derivation of type d and degree 1 associated with the type (1, 1) tensor R

as before, and f is a function whose properties are to be specified. It is easy to see that
DdDδ + DδDd = 0 follows from the fact that ddR + dRd = 0. If we assume that R has zero
torsion, so that dR

2 = 0, then the condition that Dδ
2 = 0 reduces to dRdf = 0. If f satisfies

this condition then we have a graded bi-differential calculus.
Following Dimakis and Müller-Hoissen we now have a new scheme for inductively

generating a sequence of functions χ(m), m = 0, 1, 2, . . . :

dχ(m+1) = dRχ(m) + χ(m)df.

(The original scheme is of course obtained by setting f = 0.) The consistency of this scheme
follows from the general theory in [1], but can easily be demonstrated directly; we require that

d(dRχ(m) + χ(m)df ) = −dRdχ(m) + dχ(m) ∧ df = 0.
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For m > 1 we have

−dR(dRχ(m−1) + χ(m−1)df ) + dχ(m) ∧ df

= (dχ(m) − dRχ(m−1)) ∧ df − χ(m−1)dRdf = −χ(m−1)dRdf = 0.

We shall take for initial function χ(0) = 1: then χ(1) = f , apart from a constant which will
be ignored. We now show that the functions so generated are in involution with respect to
both Poisson brackets. The rule for generating χ(m+1), when expressed in terms of Poisson
brackets, and with f replaced by χ(1), is

{χ(m+1), ·}0 = {χ(m), ·}1 + χ(m){χ(1), ·}0.

Assume that {χ(i), χ(j)}0 = {χ(i), χ(j)}1 = 0 for all i, j with 1 � i, j � m: we show that the
same is true with m + 1 in place of m. First, for 1 � i � m

{χ(m+1), χ(i)}0 = {χ(m), χ(i)}1 + χ(m){χ(1), χ(i)}0 = 0.

Then

0 = {χ(i+1), χ(m+1)}0 = {χ(i), χ(m+1)}1 + χ(i){χ(1), χ(m+1)}0

whence {χ(i), χ(m+1)}1 = 0.
Suppose that we take f to be the sum of the eigenfunctions of R, as before. It can then

be shown that the functions so generated are the elementary symmetric polynomials in the
eigenfunctions of R; and these functions are again in involution with respect to both Poisson
brackets.

The construction just described appears in a recent paper by Ibort et al [2], which
is concerned with the so-called Gelfand–Zakharevich bi-Hamiltonian systems and their
application to the problem of the separation of variables in the Hamilton–Jacobi equation
for Hamiltonians of mechanical type. The proof that the functions χ(m) are the elementary
symmetric polynomials in the eigenfunctions of R may be found there.

A paper containing, among other things, a more detailed discussion of the issues raised
above is being prepared by the present authors.
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